Does the thermal conductivity of gas diffusion layer matter in polymer electrolyte fuel cells?

نویسندگان

چکیده

Water management is a highly critical parameter for improving the performance of polymer electrolyte fuel cells (PEFCs) at high current densities. The microstructure and properties gas diffusion layer (GDL) play an important role in distribution reactant gases drainage liquid water produced catalyst during PEFC operation. In this context, community still debates on optimum values GDL’s thermal conductivity if it even decisive factor management. This study presents insight into fundamental question by reporting experimental modeling data GDLs with identical, ordered but different conductivities. Results show that lower GDL produces higher temperature gradients GDL, which are, however, partially compensated heat pipe cooling mechanism. Even order magnitude conductivity, ordered, deterministic surpass conventional carbon GDL. Our findings suggest should not be criterion future materials developments optimized to improve cell densities, rather structure.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of Non-Uniform Gas Diffusion Layer Porosity Effect on Polymer Electrolyte Membrane Fuel Cell Performance

Gas diffusion layers are essential components of proton exchange membrane fuel cell since the reactants should pass through these layers. Mass transport in these layers is highly dependent on porosity. Many of simulations have assumed, for simplicity, the porosity of GDL is constant, but in practice, there is a considerable variation in porosity along gas diffusion layers. In the present study ...

متن کامل

Multiscale modeling of single-phase multicomponent transport in the cathode gas diffusion layer of a polymer electrolyte fuel cell

This research reports a feasibility study into multi-scale polymer electrolyte fuel cell (PEFC) modelling through the simulation of macroscopic flow in the multi-layered cell via 1D electrochemical modelling, and the simulation of microscopic flow in the cathode gas diffusion layer (GDL) via 3D single-phase multi-component lattice Boltzmann (SPMC-LB) modelling. The heterogeneous porous geometry...

متن کامل

Effect of Ptfe on Thermal Conductivity of Gas Diffusion Layers of Pem Fuel Cells

Through-plane thermal conductivity of 14 SIGRACET gas diffusion layers (GDLs), including series 24 & 34, as well as 25 & 35, are measured under different compressive pressures, ranging from 2 to 14 bar, at the temperature of around 60 ͦC. The effect of compression, PTFE loadings, and micro porous layer (MPL) on thermal conductivity of the GDLs and their contact resistance with an iron clamping s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Power Sources

سال: 2022

ISSN: ['1873-2755', '0378-7753']

DOI: https://doi.org/10.1016/j.jpowsour.2022.231539